

Child Health Evaluation and Research Unit Division of General Pediatrics, University of Michigan

Risk Factors for Delays in Age-Appropriate Vaccination

Kevin Dombkowski, DrPH Paula Lantz, PhD Gary Freed, MD

March 18, 2003

Background

Childhood vaccinations are:

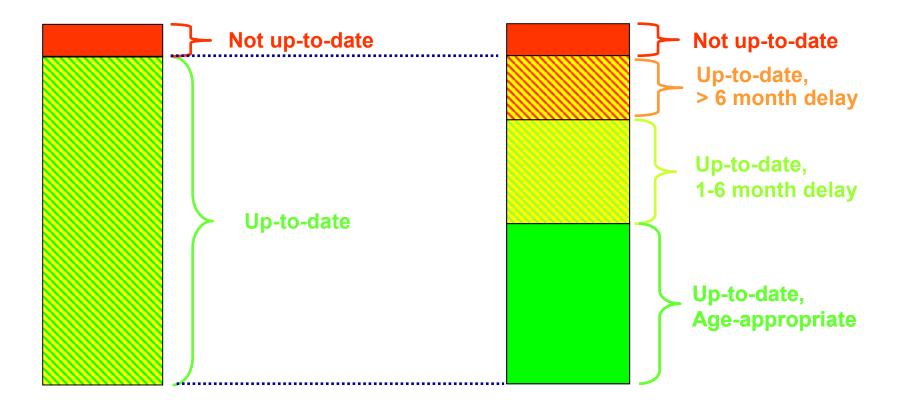
- considered to be the most cost-effective clinical preventive service
- well-defined nationally through ACIP recommendations
- integral to Healthy People 2010 and health plan performance measurement

Background

Age-appropriate vaccination is important:

- Lower morbidity expected with ageappropriate vaccinations
- Delay is a precursor to never receiving a vaccine dose
- Vaccination delays are associated with screening and developmental assessment delays

Background


- A considerable body of literature exists related to vaccination coverage rates based on *up-to-date* status
- Very limited research on risks related to age-appropriate vaccination
- Few nationally-representative studies have been conducted on the risks of vaccination delay

Methods

- Retrospective analysis of 1992 -1996 National Health Interview Survey and Supplements:
 - Immunization
 - Access to Care
 - Health Insurance
- 9,223 children 25 months 6 years of age, with written vaccination records

Measuring Vaccination Status

Two Measures of Vaccination Status:

Up-to-date status

Age-appropriate status

Methods

- Assessed age-appropriateness of:
 - DTP4, Polio3, MMR1 doses-4:3:1 series completion
- Also assessed UTD status

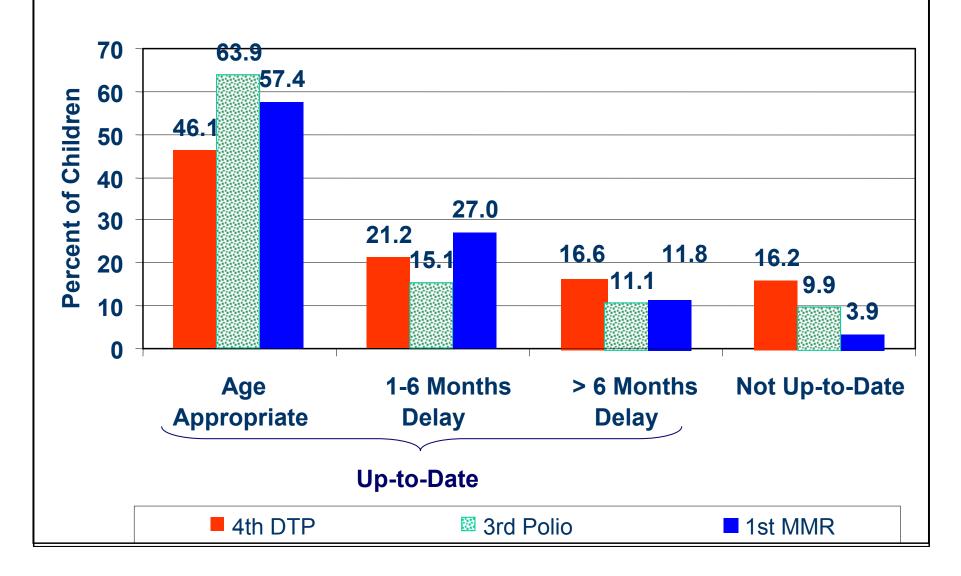
Methods

- Used multivariate logistic regression models to:
- Estimate adjusted odds ratios to assess risk factors
- Predict the likelihood of vaccination delay or non-receipt, relative to age-appropriate vaccination
- Perform policy simulations

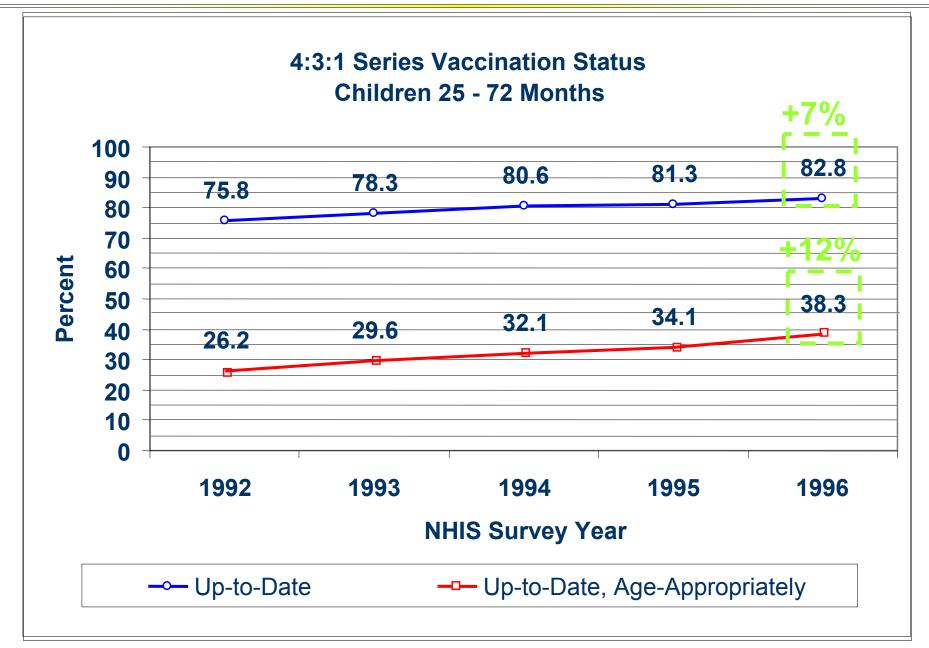
Results

For the 4:3:1 series:

- 80% were up-to-date
- 33% were age-appropriately vaccinated


Results

School-entry aged children:


- 88% up-to-date for 4:3:1 series
- 39% were age-appropriately vaccinated
- 25+% had delays of > 6 months

Age-Appropriate Status

Vaccination Delay Children 25 - 72 Months of Age

Age-Appropriate Status Trends

Risk Factors for >6 Month Vaccination Delays

Characteristic	Odds Ratios for > 6 Months Delay				
	DTP4	Polio 3	MMR1		
No Insurance Coverage	2.00 ‡	1.79 ‡	2.04 ‡		
No Telephone in Home	1.73 †	1.86 ‡	1.46 §		
Single Parent Family	1.56 ‡	1.85 ‡	1.52 †		
Black Race	1.54 †	1.59 ‡	1.43 §		
Two Children in Family	1.47 ‡	1.46 ‡	1.37		
High School or Less Education	1.32 †	1.49 †	1.64 ‡		
Medicaid Eligible	1.24	1.36 §	1.53 †		

§ p = .05 † p = .01 ‡ p = .001

Comparison of Modeling Approaches

Characteristic	Up-to-Date Models			Delay Models		
	DTP4	Polio3	MMR1	DTP4	Polio3	MMR1
Female Gender	×			×		
Black Race			×	×	×	×
Hispanic Ethnicity		×			×	×
Urban Residence	×	×		×	×	×
Suburban Residence						×
Two Parent Family				×	×	×
Number of Children in Fam	nily	×		×	×	×
Income Below Poverty Lim	it				×	
At Least Some College				×	×	×
Has Insurance Coverage				×	×	×
Medicaid Status					×	×
No Medical Home			×	×		×
No Telephone in Home				×	×	×

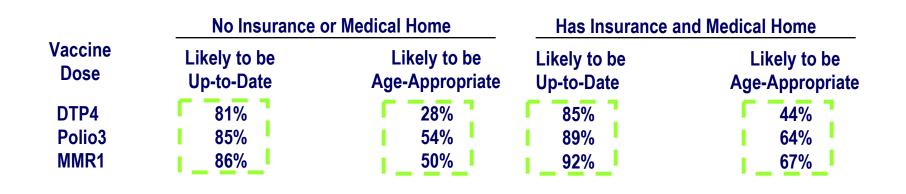
Policy Simulations

Estimate baseline probabilities, with all barriers present:

Probability of Delay = $\beta_0 + \beta_1$ Female + β_2 Black Race + β_3 Non-Hispanic + β_4 Urban

+ β_5 Two Parents + β_6 Two Children + β_7 Poverty

+ β_8 Less than College + β_9 No Insurance + β_{10} Not Medicaid


+ β_{11} No Usual Source of Medical Care + β_{12} Owns Telephone

Estimate baseline probabilities, with selected barriers removed:

Probability of Delay = $\beta_0 + \beta_1$ Female + β_2 Black Race + β_3 Non-Hispanic + β_4 Urban

- + β_5 Two Parents + β_6 Two Children + β_7 Poverty
- + β_8 Less than College + β_9 Has Insurance + β_{10} Not Medicaid
- + β_{11} Has Usual Source of Medical Care + β_{12} Owns Telephone

Policy Simulation

Summary of Results

- Vaccination delay is quite prevalent in 25 - 72 month old children
- Up-to-date status assessments tend to understate degree of underimmunization

Summary of Results

- Risks of delay vary across demographic, economic, and access to care boundaries
- Risks not fully revealed by models of up-to-date status

Summary of Results

- Some children have exceeding low likelihood of on-time vaccination
- Health insurance and medical home can substantially reduce likelihood of delay

Policy Implications

- Age-appropriate vaccination status should be monitored in conjunction with coverage rates
- Having insurance and a usual source of medical care have a substantial influence on vaccination timeliness

Vaccination Delivery Implications

- Increased vigilance of DTP4 and MMR1 missed opportunities is most likely to improve 4:3:1 vaccination rates
- Interventions may improve ageappropriateness more substantially than overall coverage rates