MedImmune

Live Attenuated Influenza Vaccine and Reduction in Influenza-Associated **Acute Otitis Media in Children Aged 24–83 Months**

Stan L. Block, MD,¹ Terho Heikkinen, MD,² Seth L. Toback, MD,³ Christopher S. Ambrose, MD³ ¹Kentucky Pediatric and Adult Research, Bardstown, KY, USA; ²Turku University Hospital, Turku, Finland; ³MedImmune, LLC, Gaithersburg, MD, USA

Introduction

- Acute otitis media (AOM) has been found to complicate 28%-67% of culture-confirmed cases of influenza in young children.^{1,2}
- The influenza virus is known to be a direct cause of AOM³ and may indirectly result in AOM by causing respiratory infections which may allow the spread of bacteria from the nasopharvnx into the middle ear.4
- · Live attenuated influenza vaccine (LAIV) is approved for use in eligible children ≥24 months of age in the United States, South Korea, Israel, Hong Kong and Macau.

<u>Several large randomized clinical studies in children have shown that LAIV is</u> ighly effective in preventing culture confirmed influenza compared with both placebo and trivalent inactivated influenza vaccine (TIV).5-11

 LAIV has been shown to reduce the severity of influenza illness, measured by reductions in fever, days of missed school/daycare, and total symptom score in breakthrough influenza cases compared with placebo and TIV; no previous analysis has sought to determine whether LAIV reduces the incidence of AOM in children with breakthrough influenza.5,12,13

Objective

• To estimate the efficacy of LAIV in preventing AOM associated with cultureconfirmed influenza illness in children ≥24 months of age versus placebo and TIV.

Methods

- We pooled data regarding influenza-associated AOM from 5 randomized. double-blind, placebo-controlled trials in children 24-83 months of age^{8,10,14-} ¹⁷ (LAIV, n=4278; placebo, n=2784), and 2 randomized, double-blind, TIV-controlled trials in children 24–71 months of age^{5,6} (LAIV, n=2872; TIV, n=2903) in which LAIV efficacy against AOM associated with cultureconfirmed influenza was a prespecified endpoint (Table 1).
- Efficacy was calculated using the incidence of all influenza strains regardless of antigenic similarity to those strains in the vaccine in 9 influenza seasons for placebo-controlled trials and in 2 seasons for TIVcontrolled trials.
- Subjects included healthy children, those with frequent respiratory tract infections, and those attending daycare.
- In 5 of the 7 studies, AOM was defined clinically by the presence of an abnormal tympanic membrane suggesting effusion in the middle ear cavity, with signs/symptoms consistent with acute infection.
- Study 5 defined otitis media as a clinical diagnosis made by a healthcare provider.
- Study 7 defined AOM as a diagnosis made by a healthcare provider (by parent report or chart review) concurrent with fever and the use of antibiotics.
- Influenza was detected by viral culture from the nasal passages.
- AOM associated with culture-confirmed influenza was evaluated in all LAIV and placebo recipients and in those with culture-confirmed influenza.

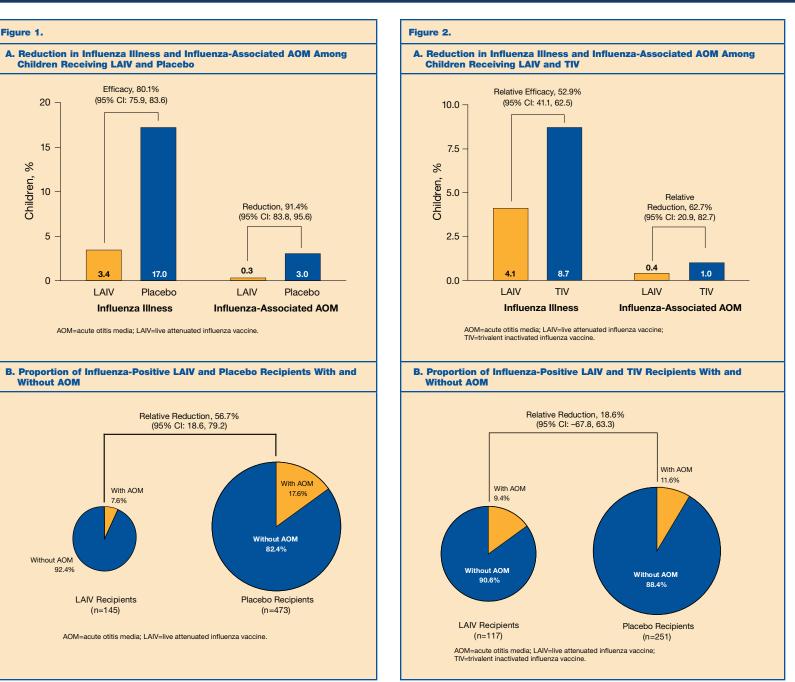
Table 1. LAIV Studies Measuring Efficacy Against AOM as a Prespecified Secondary Endpoint Among Children Aged ≥24 Months				
Study Number	Age Range, mo	LAIV, n	Control, n	Location
Placebo Controlled Studies				
Study 1 ¹⁰ , Year 1	24–35	782	534	Asia*
Study 1 ¹⁰ , Year 2	24–47	362	238	Asia*
Study 2 ¹⁷ , Year 1	24–35	490	356	Europe [†]
Study 2 ¹⁷ , Year 2	24–47	340	250	Europe [†]
Study 3 ⁸ , Year 1	24–35	344	332	Multinational‡
Study 3 ⁸ , Year 2	24–47	121	116	Multinational‡
Study 4 ¹⁶	24–35	209	182	Asia§
Study 5 ¹⁵ , Year 1	24–71	713	335	United States
Study 5 ¹⁴ , Year 2	27–83	917	441	United States
TIV Controlled Stud	lies			
Study 6⁵	24–71	790	819	Europe
Study 7 ⁶	24–59	2082	2084	Multinational ¹

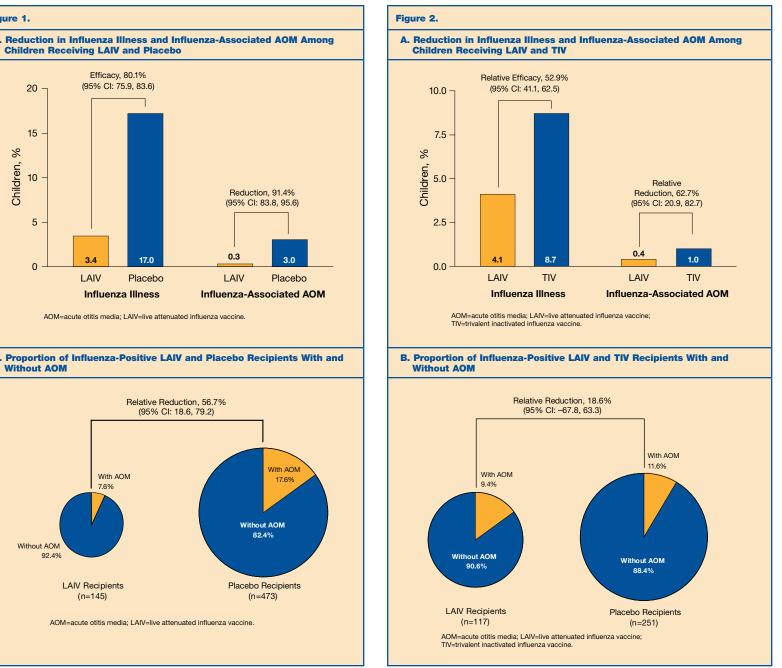
AOM=acute otitis media; LAIV=live attenuated influenza vaccine; TIV=trivalent

inactivated influenza vaccine

*China, Hong Kong, India, Malaysia, Philippines, Singapore, Taiwan, Thailand

[†]Belgium, Finland, Israel, Spain, United Kingdom [‡]Argentina, Brazil, South Africa


§Philippines, Thailand


Belgium, Czech Republic, Finland, Germany, Israel, Italy, Poland, Spain, Switzerland, United Kingdom

Asia, Europe, Middle East, United States

Results

- The pooled efficacy of LAIV against influenza-associated AOM due to all strains was 91.4% (0.3% vs 3.0%; 95% CI: 83.8, 95.6) vs placebo and 62.7% (0.4% vs 1.0%; 95% CI: 20.9, 82.7) vs TIV.
- · Compared with placebo, when analyzing only those children with cultureconfirmed influenza illness, 7.6% of LAIV recipients with breakthrough influenza had AOM vs 17.6% of placebo recipients with influenza illness, resulting in a 56.7% reduction (95% CI: 18.6, 79.2; Figure 1).
- Compared with TIV, among only those children with culture-confirmed influenza illness. AOM was diagnosed in 9.4% of LAIV recipients and 11.6% of TIV recipients, for a nonsignificant relative reduction of 18.6% (95% CI: -67.8, 63.3; Figure 2).

For additional information, please contact Christopher S. Ambrose, MD (AmbroseC@MedImmune.com)

Conclusions

- Among children 24–83 months of age, LAIV substantially reduced influenza-associated AOM compared with placebo and TIV.
- Compared with placebo recipients with confirmed influenza, LAIV recipients who developed breakthrough influenza had less severe disease as evidenced by 57% fewer children developing AOM.
- · LAIV recipients had substantially fewer cases of influenza-associated AOM than TIV recipients.
- Rates of AOM among LAIV and TIV recipients who developed influenza illness were statistically similar.

References

- 1. Heikkinen T, et al. Am J Dis Child. 1991;145:445-448.
- 2. Poehling KA, et al. N Engl J Med. 2006;355:31-40.
- 3. Heikkinen T and Chonmaitree T. Clin Microbiol Rev. 2003;16:230-241.
- 4. Heikkinen T. Pediatr Infect Dis J. 2000;19:S17-22; discussion S22-13.
- 5. Ashkenazi S, et al. Pediatr Infect Dis J. 2006;25:870-879.
- 6. Belshe RB, et al. N Engl J Med. 2007;356:685-696.
- 7. Belshe RB and Gruber WC. Pediatr Infect Dis J. 2000;19:S66-71.
- 8. Bracco Neto H. et al. Pediatr Infect Dis J. 2009:28:365-371.
- 9. Fleming DM, et al. Pediatr Infect Dis J. 2006;25:860-869.
- 10. Tam JS, et al. Pediatr Infect Dis J. 2007;26:619-628.
- 11. Vesikari T. et al. Pediatr Infect Dis J. 2006:25:590-595.
- 12. Treanor JJ, et al. Vaccine. 1999;18:899-906.
- 13. Yang CF, et al. Vaccine. in press
- 14. Belshe RB, et al. J Pediatr. 2000;136:168-175.
- 15. Belshe RB, et al. N Engl J Med. 1998;338:1405-1412.
- 16. Forrest BD. et al. Clin Vaccine Immunol. 2008:15:1042-1053.
- 17. Vesikari T. et al. Pediatrics. 2006;118:2298-2312.

This study was sponsored by MedImmune.