A Systematic Evaluation of Different Methods of Calculating Adolescent Vaccination Levels Using Immunization Registry Data

${ }^{3}$ Children's Outcomes Research Program; University of Colorado, Denver

Background

- Immunization information systems (IISs) are valuable population-based surveillance tools
- Defining the population eligible to receive vaccines is a key consideration when using an IIS to determine vaccination levels.
- Incomplete data due to in- and out-migration may affect the accuracy of the eligible population and introduce bias into the determination of immunization levels.

To systematically evaluate the degree to which different methods of determining the vaccine-eligible population in an IIS may result in variation in calculated adolescent immunization coverage levels.
Methods

The Michigan Care Improvement Registry (MCIR) was used to: 1) determine county of residence and Moved or Gone Elsewhere (MOGE) status; and 2) assess coverage levels (using the ACIP vaccine schedule) for the following adolescent vaccines among children 11-18 years: Tdap (tetanus-diphtheria-acellular pertussis); papillomavirus) vaccine (among females only).

Alternative Denominator Definitions
our different vaccine-eligible populations were defined:
\square MCIR Inclusive contained all adolescents with MCIR records (reference group); - Exclude MOGE excluded adolescents identified as having moved out of state;

- Exclude MOGE and Inactive further excluded those with no activity on their

Census used US ≥ 10 yeas population in 2010.

Analyses

Analyses
\square County-specific coverage levels for each of the four vaccines were calculated using the four different vaccine-eligible populations.
\square Maximal difference in coverage levels was defined for each county and vaccine as
the diffierence between highest and lowest calculated levels.
Que number of counties thaty vaccination levels across methods were identified. calculation methods was assessed.

Results
Study Population

- A total of $1,253,498$ adolescents were identified after excluding: those without valid county of residence ($n=121,562$); duplicate records (6,679); and deceased \square The populations of vaccine-eligible adolescents determined using the different methods varied substantially in size, as shown below.

Variation in Vaccination Levels Across Methods
\square Though there was some variability in vaccination levels (2 to 11 percentage-points, depending on vaccine) at the state level, there was greater variation in county-
specific levels (up to 21 percentage-points depending on county and vaccine).
\square The majority of counties had maximal differences in vaccine coverage levels of ≥ 11 percentage-points for Tdap and MCV4, whereas no
differences of >10 percentage-points for HPV and Flu.

Figure. Maximal Variation in Adolescent Vaccine Coverage Levels

Results (cont.)

Movement in County Quartile Rankings

- County quartile rankings varied based on the method used to calculate vaccin coverage levels. Most movement occurred when comparing levels calculated using CIR Inclusive vs. Census denominators
\square Vaccines with the greatest variation in calculated coverage levels (Tdap and MCV4) had the highest number of counties ($11-39$) that migrated between quartiles when comparing different methods.
- Approximately 15 to 51% of MI adolescents resided in the counties that migrated between quartiles.

Table. Migration in Percentile Categories by Different Calculation Methods ${ }^{\text {a }}$

	Comparison between MCIR Inclusive versus					
	Exclude MOGE \# of counties (\% of adolescents) that move ≥ 1 quartile ≥ 2 quartiles		Exclude MOGE and Inactive \# of counties (\% of adolescents) that move ≥ 1 quartile $\quad \geq 2$ quartiles		Census \# of counties (\% of adolescents) that move ≥ 1 quartile ≥ 2 quartiles	
Tdap ${ }^{\text {b }}$	11 (51\%)	1 (0.1\%)	18 (50\%)	1 (0.1\%)	37 (30\%)	6 (4\%)
MCV4 ${ }^{\text {b }}$	17 (15\%)	1 (0.1\%)	22 (24\%)	0 (0\%)	39 (47\%)	5 (4\%)
$\geq 3 \mathrm{HPV}$ doses ${ }^{\text {c }}$	6 (6\%)	0 (0\%)	20 (9\%)	0 (0\%)	29 (11\%)	0 (0\%)
$\mathrm{Flu}^{\text {b }}$	$9(4 \%)$	0 (0\%)	15 (8\%)	0 (0\%)	27 (15\%)	0 (0\%)

Conclusions

\square Substantial differences in calculated vaccine coverage levels were found based on whether the state IIS or U.S. census data was used
\square We found that the calculation method da to notabled. might rank among each other.

- This potential for disparity in calculations should be considered when evaluating immunization programs and policies or determining appropriate resource allocation within a state.

