USAMRIID

Immunizations, registries and antibioterrorism efforts

Presented by: Lisa E. Hensley

Category A Agents

- The U.S. public health system and primary healthcare providers must be prepared to address various biological agents, including pathogens that are rarely seen in the United States. High-priority agents include organisms that pose a risk to national security because they
 - can be easily disseminated or transmitted from person to person;
 - result in high mortality rates and have the potential for major public health impact;
 - might cause public panic and social disruption; and
 - require special action for public health preparedness.

Category A Agents

- »Anthrax (Bacillus anthracis)
- »Botulism (Clostridium botulinum toxin)
- »Plague (Yersinia pestis)
- »Smallpox (variola major)
- »Tularemia (Francisella tularensis)
- »Viral hemorrhagic fevers (filoviruses [e.g., Ebola, Marburg] and arenaviruses [e.g., Lassa, Machupo])

Background

- EBOV infections characterized by dysregulation of the host immune respons
 - bystander lymphocyte apoptosis
 - proinflammatory cytokines
 - coagulation abnormalities (DIC)

Vaccine	Gene Produc	t Sur	Survivors / Total Challenged Animal Model		
		Mouse	Guinea Pig	Macague	
Vaccinia	GP	NT	3/5	0/3	Gilligan '97, Geisbert '0
Vaccinia	sGP	NT	0/5	NT	Gilligan '97
Vaccinia	VP24	NT	0/30	NT	Chepurnov '97
Vaccinia	VP35	NT	0/5	NT	Gilligan '97
Vaccinia	VP40	NT	0/5	NT	Gilligan '97
VEE Replicon	GP	18/20	8/10(5/5)	0/3	Pushko '00, Geisbert '02
VEE Replicon	NP	20/20	1/10	0/3	Pushko, Wilson, Geisber
VEE Replicon	GP+NP	20/20	5/5	0/3	Pushko '00, Geisbert '02
VEE Replicon	VP24	37/60	NT	NT	Wilson '01
VEE Replicon	VP30	30/60	NT	NT	Wilson '01
VEE Replicon	VP35	23/59	NT	NT	Wilson '01
VEE Replicon	VP40	32/60	NT	NT	Wilson '01
Baculovirus	GP	NT	3/6	NT	MellqRiem. '03
Baculovirus	GPΔ	NT	1/6	NT	MellqRiem. '03
DNA	GP	50-100%	14/21	NT	Vanderz., Xu, Sullivan
DNA	sGP	NT	8/11	NT	Xu '98
DNA	NP	70-80%	5/8	NT	Vanderzanden '98, Xu
DNA	GP+NP	NT	8/8	NT	Sullivan '00
DNA + Ad 5	GP+NP	NT	NT	4/4	Sullivan '00
DNA + Baculo	GP	NT	0/6	NT	MellqRiem. '03
DNA + Baculo	$GP\Delta$	NT	2/6	NT	MellqRiem. '03
Ad5	GP+NP	NT	NT	8/8	Sullivan '03
Ad5 + Ad5	GP+NP	NT	NT	8/8	Sullivan '03
Inactivated Virus	Whole virus			4/5 (baboons)	Mikhailov et al
Inactivated Virus	Whole virus			0/5 NHPs	Geisbert et al.

Ebola Virus - Therapeutics

Compound / Drug	Mouse	G.Pig	Nonhuman	Human
			Primate	
Ribavirin	NT	No	No	NT
S-adenosylhomocysteine	Yes	NT	No	NT
rIFN-α	Yes	No	No	NT
Equine IgG	Partial	Yes	No	?
Convalescent blood	NT	NT	0/4	7/8
rHuman monoclonal ab	NT	Yes	No	NT

Treatment of NHP's with IFN-β

- Infected Ebola-Zaire'95 IM
- First treatment 18 hrs post-infection
- Treated every other day with 10.5 ug/kg (2.8 x 10⁶ IU / kg
- Treatment discontinued after Day 9

Monkey	Day of Death	Viremia D3	Viremia D6	Viremia D8	Viremia D13
CH64*	7	0	7.1		•
DDF	8	1.8	3.9	6.1	
CH74	10	3.1	5.9		
СВТ	10	1.7	5.7		
FXA	12	0	4.9		
HBX	29	0	4.2		2.4

Mean day of death untreated Rhesus NHPs infected with EBOZ: 8.37 ± 0.89 days

Smallpox overview

- Incubation period 7-19 days no clinical symptoms but intense viral replication
- Sudden onset of high fever; then general lethargy, severe headache, backache, and vomiting
- Fever begins to fall after 2-3 days and a rash appears on tongue and face
- Macular rash spreads to trunk and extremities
- Rash progresses to vesicles, pustules and then scabs over deep scars remain after scabs heal

Fenner, F. et al., Smallpox and Its Eradication, Geneva: WHO, 1988

Smallpox Vaccine

- Current vaccine:
 - Who should get the vaccine?
 - What are the side-effects?
 - Does the risk side effects = the need for the vaccine?
 - How long is the vaccine good for?
 - Who can take the vaccine?
 - What about those individuals who cannot get the vaccine

Ring Vaccination

- Ring vaccination was very effective in Africa but will it work here?
 - Early detection / diagnostics
 - Identifying contacts
 - Transmissibility
 - Infrastructure to handle a multi-center release?
 - What about the individuals that cannot or will not take the vaccine?

Weaponized or Modified viruses

- Genetic manipulation of virus
 - Pox viruses are uniquely suited to the introduction of new genes including immunemodulation or lethality factors (e.g. IL-4 and mouse pox)
- Weaponization of virus
 - Release of the virus at Arlask: Was the virus hotter? Was there vaccine breakthrough?

Directions

- Development of new vaccines
 - DNA vaccines
- Development of anti-virals
- Development of alternative therapeutics
- Development of better diagnostics (CDC & USAMRIID)
- Development of animal models (USAMRIID & CDC)
- Application of new technologies

Desired expression signatures from variola virus-infected hosts

Signatures that indicate or provide...

- early identification: variola virus-specific, orthopoxvirus-generic
- prognosis for variola-infected host: favorable, unfavorable
- early favorable response to therapy (interrupted infection)
- early markers for protective response to vaccine
- analogous signatures for monkeypox infection

Host genome-wide expression profiling: potential benefits

- Diagnosis
 - early detection of infected individuals
 - recognition of variant agents
 - prognostic markers
- Mechanisms of virulence and disease
 - novel strategies for therapy, prophylaxis
- Prevention
 - early signatures of a protective immune response to vaccination

We've come a long way

- Continued development and testing of new vaccines (new platforms, short term vaccination strategies, multi-valent vaccines)
- Screening of anti-virals
- Development of animal models and continued pathogenesis studies
- Development of immune-modulating therapies or therapeutic strategies that target or interrupt the clinical disease course
- Development of improved diagnostic and diagnostic indicators.

Contributors:

- Tom Geisbert Kate Rubins
- Peter Jahrling David Relman
- Howard Young
- Chris Karp
- Denise Braun
- Joan Geisbert

Special Thanks:

- Pathology Division USAMRIID
- Vet Med Division USAMRIID
- Michael Hensley
- Organizers & Support staff CDC & USAMRIID